In mathematics, in the theory of integrable systems, a Lax pair is a pair of time-dependent matrices or operators that describe the corresponding differential equations. They were introduced by Peter Lax to discuss solitons in continuous media. The inverse scattering transform makes use of the Lax equations to solve such systems.
Contents |
A Lax pair is a pair of matrices or operators dependent on time and acting on a fixed Hilbert space, and satisfying Lax's equation:
where is the commutator. Often, as in the example below, depends on in a prescribed way, so this is a nonlinear equation for as a function of .
It can then be shown that the eigenvalues and more generally the spectrum of L are independent of t. The matrices/operators L are said to be isospectral as varies.
The core observation is that the matrices are all similar by virtue of
where is the solution of the Cauchy problem
where I denotes the identity matrix. Note that if L(t) is self-adjoint and P(t) is skew-adjoint, then U(t,s) will be unitary.
In other words, to solve the eigenvalue problem Lψ = λψ at time t, it is possible to solve the same problem at time 0 where L is generally known better, and to propagate the solution with the following formulas:
The above property is the basis for the inverse scattering method. In this method, L and P act on a functional space (thus ψ = ψ(t,x)), and depend on an unknown function u(t,x) which is to be determined. It is generally assumed that u(0,x) is known, and that P does not depend on u in the scattering region where . The method then takes the following form:
The Korteweg–de Vries equation is
It can be reformulated as the Lax equation
with
where all derivatives act on all objects to the right. This accounts for the infinite number of first integrals of the KdV equation.
Further examples of systems of equations that can be formulated as a Lax pair include: